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The Power Transform method of integrating the nonlinear Vlasov equation is applied 
to two physically significant problems and the solutions are compared with the results 
of the Fourier-Hermite method. 

The problems considered are one dimensional, with periodic boundary conditions 
and involve (1) Landau damping in a Maxwellian plasma, and (2) the two-beam in- 
stability with equal electron beams. 

The Power Transform method is discussed and several truncation techniques arc 
presented. It is found that an extrapolation procedure can be used which allows a 
truncation of the infinite matrix without causing numerical instabilities in the nonlinear 
system, Close quantitative agreement between the results of the two methods is found. 

I. TNTR~DUCTI~N 

It has become increasingly apparent lately that computer simulation plays an 
indispensable role in the understanding of plasma phenomena. Although the 
dynamical equations of plasma physics are essentially Maxwell’s equations and 
Newton’s equations of motion, they are highly nonlinear and pose an impossible 
task for satisfactory analytical analysis; however, the gross macroscopic behavior 
of the plasma is quite simple to analyze through numerical simulation (see, e.g., 
“Methods in Computational Physics,” Vol. 9). 

Two fundamentally different formulations have emerged in the numerical 
simulation of plasmas. One method consists of numerically solving the Vlasov- 
Poissson set of equations while the other computes the dynamics of a large number 
of charged particles as they move in their self-consistent electric fields. 

If a direct numerical simulation of the Vlasov equation is attempted, either the 
independent variable u must be transformed or the distribution function must be 
periodically reconstructed with appropriate weighting factors to suppress the 
fine structure in order to avoid a breakdown of the solution [I]. The Fourier- 
Fourier Transform method [2] incorporates a Fourier transformation of both 
phase space variables; whereas in the case of the Fourier-Hermite transformation 
method [3, 41, only the spatial variable is Fourier transformed and the velocity 
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variable is represented by a series using Hermite polynomials. The major difficulty 
with the Fourier-Hermite method is the apparent numerical instability that arises 
when the infinite Hermite series is truncated. A large number of coefficients, 
O(lOOO), must be kept in order to compute for times of interest if the infinite matrix is 
simply truncated. This results in the consumption of a great deal of computer 
time; thus, it is economically desirable to seek another truncation procedure. 

Armstrong [4] has been able to slow down the increase in Hermite polynomials, 
and thus compute for a longer period of time, by introducing a collision term into 
the Fourier-Hermite code. This permits one to use a few less coefficients; however, 
the collision term does produce a noticeable change in the solution for the electric 
field [4]. With the Fourier-Hermite code in its present form there is as yet no 
satisfactory extrapolation scheme available to estimate accurately the coefficients 
beyond the boundary of the matrix. 

A new transformation scheme, the Power Transform method, has recently 
appeared [5]. The purpose of this work is to examine critically the applicability of 
the Power Transform method to two physically significant problems and compare 
the results with those obtained by Armstrong [3, 41 with the Fourier-Hermite 
method. We will be concerned primarily with truncation procedures and the 
stability of the Power Transform method. We find that the Power Transform 
method is amenable to an extrapolation procedure which avoids the difficulty 
of a cutoff and yields an appreciable savings in computer time. Extremely close 
agreement is found with the Fourier-Hermite method. 

The problems considered are one dimensional with periodic boundary conditions. 
The plasma is considered to be a collisionless electron gas; i.e., only the motions 
of the electrons will be considered and the system is macroscopically neutral with 
a uniform immobile positive background. Only electrostatic forces between the 
charges are considered. Solutions for both stable and unstable initial conditions 
are presented. 

In the next section, we outline the Power Transform method with a discussion 
of the truncation procedures. In Section III, we present the solutions to the 
problems of Landau damping in a Maxwellian plasma and the two-beam instability. 

II. THE POWER TRANSFORM METHOD 

A. A Review of the Power Transform Method 

We consider the Vlasov-Poisson set of equations in dimensionless units 

(1) 

(2) 

ajcx, v, t> + v af(x, 0, t> _ E am 0, t) = 0 

at ax at 3 

aE -= 
ax 

1 - sf(x, u, t) dv. 
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The details of the transformation are presented elsewhere [5] so we will outline 
only the procedure. 

Fourier transforming the functions in both the spatial and velocity variables, 
we have 

iE, = & F,(O, t). 
0 

Writing F,(y, t) as an expansion of powers of y, we obtain 

F,(Y, t> = f ~A)gv~~e-~~‘~, 
v=o 

where 

Substituting this expansion in Eq. (3) results in the following set of coupled 
equations: 

42,,(t) + ~ow,l(v + 1) %,,+,(t) - wz,“-,l + 4G F EJ(t) %,,,-IQ> = 0 (7) 
q--cc 

with 

where 

(8) 

This set of equations is termed the “Power Transform method” [5]. Equation (7) 
was integrated forward in time on the IBM 360-65 computer at the University of 
Iowa by using a modified Adams-Bashford predictor-corrector algorithm. 

Note that for symmetric initial conditions, as used in this work, the an,” are 
all real, whereas the coefficients obtained from a Hermite expansion in velocity are 
alternately real and imaginary [4]. Joyce et al. [5] have shown that the two expansion 
schemes are identical except for a complex factor. 

B. Truncation DifJiculties 

When the system of Eq. (7) is numerically integrated, we are faced with the 
same problem of truncating the v index as with the Hermite index for the Fourier- 
Hermite method. 
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If we set an,” = 0 for v > N(N = v,,,), we are again forced to choose N very 
large to obtain correct macroscopic quantities for a reasonable length of time. 
This, of course, would provide no advantage over the Fourier-Hermite code. The 
present form of the linear Vlasov equations [Eq. (7)], however, lends itself to a 
polynomial extrapolation scheme whereby we can accurately estimate the N + 1 
coefficient. 

There is no reason to assume any regularity between the an,” ; however, when 
a version of Eq. (7) corresponding to the linearized Vlasov equation is numerically 
integrated, the a,,,(~ = 0, 1, 2, . ..) form a very regular pattern for large nu for the 
linear system [5]. The N + 1 coefficient can, therefore, be determined by a poly- 
nomial extrapolation and thus close the system. With a fourth-order polynomial 
scheme, Joyce et al. [5] have shown that the linear Vlasov system can be reasonably 
represented by as few as 10 coefficients. We will discuss the effect the number of 
coefficients has on the solution for the electric field in Sections II-D and E. 

For unstable initial conditions (the two-beam instability) we find that the coeffi- 
cients no longer lie on a smooth curve but are somewhat scattered. Even with this 
scattering, we find reasonable agreement between the lower-order coefficients for 
N as small as 20. We find that by closing the system with the polynomial extra- 
polation procedure, the inaccuracies in describing the electric field are very 
slight even with N - 0 (20). If one wishes to examine the interaction of the waves 
with the distribution function, however, it is advisable to incorporate a larger 
number of coefficients. 

C. Use of a Damping Term 

If we modify the system of Eq. (7) in such a way that the amplitudes of the 
a n,v with v close to N can never become large, then a truncation has the same effect 
as a reasonable guess of an,N+1. By adding a damping term similar to that used 
with the Fourier-Hermite code [4], to the right side of Eq. (7), we find that the 
coefficients with small v are not affected by the damping of the an,” which have 
large v. The damping term we have chosen is 

(Z), = [% ($ + $)yf 

which assumes the form 

With a collision term of this form, the coefficients can be written as 

with 7C < 1. The coefficients with small v are only slightly affected by the collision 
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term since ~7~ < 1; thus (~7~)~ << (~7,); however, the coefficients with v large are 
heavily damped since vve > 1 and (~7~)~ > VT~ . This collision term thus selectively 
suppresses only the large u derivatives of the distribution function. 

We find that for (qe N) N 0 (I), the instability that appears in the Landau- 
damped case is suppressed without adding noticeably to the damping decrement; 
and we obtain excellent results for N as small as 80. For the two-stream instability 
problem, it is necessary to keep (rlC N) < 1 so that the macroscopic quantities are 
not significantly affected. 

We will now discuss the results of these cutoff procedures in more detail with 
specific examples for both the stable and unstable initial conditions. In Section 
III-A we discuss the stable initial condition (the simple Maxwellian distribution); 
and in Section III-B we present the results for the unstable case (the two-beam 
instability). 

III. NUMERICAL RESULTS 

A. Numerical Results for Stable Initial Conditions 

In all of the cases to be considered in this section, the form of the initial distribu- 
tion is the Maxwellian distribution 

fo(v, 0) = dkL e-e2/2. 

We found early in the calculations that 1 E,(t)1 was at least an order of magnitude 
smaller than 1 E,(t)l; thus, only the results with n = 1 will be presented. 

We will consider wave numbers of k = 0.3, 0.4,0.5, and 0.9 with a perturbation 
E = 0.035. We will first present the results of the extrapolation scheme. We find 
that we can easily avoid the difficulty of a cutoff by accurately estimating the 
N + 1 coefficient and we are able to describe the system for a reasonable length of 
time with as few as 10 coefficients. We will then discuss the results obtained by 
using the collision term to avoid an early breakdown of the system. 

As an illustration of the results, we have chosen k = 0.5 and E = 0.035. Keeping 
only 80 coefficients, we then closed the set of equations by using a fourth-order 
polynomial extrapolation scheme. This allows us to estimate accurately the N + 1 
coefficient. No breakdown of the system appears for the total time computed 
(50 CIJ;‘). As shown in Fig. 1, the electric field undergoes linear decay with a 
damping decrement of y1 = -0.158 until t = 28 wpl when the decrement falls 
below the linear value. The damping decrement for 1 < 28 wpl agrees exactly 
with the linear theoretical calculations done by Gary [6]. The results also agree 
favorably with the work done by Armstrong [3, 41 where the decrease in the 
damping decrement appears at almost the same time. 
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FIG. 1. Numerical integration of the first-order system for k = 0.5, c = 0.035, N = 80, for 
stable initial conditions using the extrapolation scheme. 

As noted previously, if we truncate the system with a small number of coefficients, 
we can suppress the large v derivatives by adding a damping term of the form 
-(Qv)” a,,,(t) to the right side of Eq. (7). With 80 coefficients and qC = 0.016, 
1 = 4, we find that the breakdown of the system is completely suppressed; however, 
the field now undergoes strictly linear decay for the total time of computation. 
As the results indicate, this damping term selectively suppresses only the higher- 
order coefficients without adding significantly to the damping decrement for 
t<30w il. We do note that for t > 30 UJ;~, the collision term adds slightly to the 
damping decrement obtained with the extrapolated code. 

The breakdown of the system manifests itself through a large jump in the size 
of the electric field. With k = 0.5 and E = 0.035 and truncating the matrix at 
80 coefficients, we find that 1 E,(t)] undergoes linear decay until t = 32 w1 when 
breakdown becomes apparent. We note that the sharp growth in the electric field 
appears at t = 2d@zk, . This corresponds to the predicted time at which the 
v-th coefficient attains its maximum value, t = 4G/nk, [3]. 

By choosing N larger, the instability appears at later times; and with N - 0 (250), 
the solution is in exact agreement with the extrapolated solution with only 80 
coefficients. 

A summary of the results obtained with the four truncation schemes, i.e., (a) 
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TABLE I 

Summary of Results for Landau Damping of the Maxwellian Distribution 

Scheme” Nb v 7-d Deviation6 

A 
B 
C 
D 

80 
80 
80 
80 

- 
- 

0.0062 
0.0062 

k = 0.3; B = 0.035 

- 
- 0 
- 0 
- 0 

A 80 
B 80 
C 100 
C 80 
D 80 

- 
- 

0.0062 
0.01 
0.0062 

k = 0.4; E = 0.035 

- - 
35 bd 
43 +120 
- 0 
45 -0.2 

A 80 
A 40 
A 20 
A 10 
B 80 
B 250 
C 80 
C 80 
C 80 
D 80 
D 80 

- 
- 30 

29 
25 

- 31 
- - 

0.0062 33 
0.010 33 
0.016 32 
0.0062 48 
0.016 32 

k = 0.5: E = 0.035 

- 
-25 
-31 
-19 

bd 
0 

bd 
+43 
-30 
-0.1 

-30 

A 
B 
C 
C 
D 

80 
80 

100 
100 
80 

- 

0.0062 
0.013 
0.0062 

k = 0.9; E = 0.035 

- - 
19 bd 
21 bd 
21 += 
18 -0.1 

*Truncation scheme: A: Polynomial extrapolation. B: Truncation; no collision term. C: 
Truncation with collision term. D: Extrapolation with collision term. 

b N = total number of coefficients. 
c 7) = collision term. 
d T’ = time (in o;l) at which first variations appeared. 
“Deviation. Average percentage of deviation from extrapolated solution; bd = breakdown 

(manifested by large regrowth of I$. 
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extrapolation with a fourth-order polynomial, (b) pure truncation of the matrix, 
(c) truncation with the addition of a collision term, and (d) extrapolation with a 
collision term, is presented in Table I. In all runs, a pure truncation of the matrix 
results in a complete breakdown of the system after a short period of time. Only 
in the case of k = 0.4 were we able to suppress the breakdown of the truncated 
system with a collision term without adding to the Landau damping. 

We find that the extrapolation scheme can estimate the N + 1 coefficient to 
such a high degree of accuracy that the addition of a collision term is unnecessary. 
In all trials, the results of the fourth-order polynomial extrapolation scheme are in 
excellent agreement with the Fourier-Hermite solutions obtained by Armstrong 
[3, 41. 

We now further investigate the extrapolated Power Transform method by 
examining the change in 1 E,(t)1 as we reduce the number of coefficients. We choose 
the k = 0.5 and E = 0.035. We find that the results are in exact agreement for a 
reasonable length of time with N as small as 10. We have plotted the envelope of 
1 E,(t)1 for N = 80,40,20, and 10 in Fig. 2. Only with N = 10 is there any change 
in 1 E,(t)] before t = 30 oil. 

We note that, as the number of coefficients is decreased, the damping rate 
approaches its linear value. With 20 coefficients the field undergoes strict Landau 

FIG. 2. Plot of the envelope of 1 .&@)I for maximum Y = 10, 20,40, 80, for the extrapolated 
scheme with k = 0.5 and l = 0.035. 



COMPARISON OF TRANSFORM SOLUTIONS 501 

damping with y1 = -0.158 for the total time computed. We note that a similar 
increase in the damping rate was found for very large collision frequencies. 

As the solutions for stable initial conditions quite clearly show, we are able to 
circumvent the difficulty of a cutoff mechanism by using an extrapolation scheme 
with the Power Transform method. This scheme is capable of estimating the 
N + 1 coefficient to such a degree that relatively few coefficients are needed in 
order to obtain excellent results. 

We now want to apply the Power Transform method to the solution of unstable 
initial conditions. We find that the results are again in excellent agreement with the 
Fourier-Hermite Transform method. 

B. Numerical Results for Unstable Initial Conditions 

We will now investigate the results of the three cutoff procedures on the unstable 
initial condition, i.e., 

fO(v, 0) = (l/277) v2e-V2/2. 

We found for the unstable case that we could not obtain reasonable results by 
just truncating the matrix at N = 80. The coefficients grew too large, resulting in 

FIG. 3. Comparison of the extrapolated and the extrapolated with collisions solutions of the 
unstable case, k = 0.5, E = 0.02, N = 80, vc = 0.0062, I = 4. 
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early failure of the program. By using a small damping term (ye N 0.0062), 
however, we are able to obtain somewhat reasonable results for times of interest. 
We had no difficulty with the extrapolated code. 

For the first example we have chosen k = 0.5 and E = 0.02 with IZ = 1. The 
solution of E,(t) for the fourth-order polynomial extrapolation scheme with 
N = 80 is presented in Fig. 3. E,(t) was observed to grow exponentially with a 
growth rate of y1 = 0.245. The growth ceased at t = 20.5 up’, after which the 
field undergoes a long period of fluctuation in magnitude. Very small fluctuations 
appear in the electric field between t = 34 and t = 44. These ripples can be 
removed by adding a very small damping term (TV = 0.0062) to the extrapolated 
code. This is also shown in Fig. 3. 

It is thought that this roughness in E,(t) is due more to the fact that we are 
solving the n = 1 solution only and not to inaccuracies in the extrapolation pro- 
cedure. We find that these ripples do not appear for n 3 2. It is to be noted that 
the growth rate for k = 0.5 (rr = 0.245) is in exact agreement with Armstrong’s 
results [3]. Thus, it appears that in a situation where computer time is at a premium, 
a small collision term could be used with the extrapolated code as a means of 
obtaining excellent results with only the first harmonic. 

With the same wave number and a perturbation E = 0.04, we calculated the 

3 

~ EXTRWOLATEO N = 80 

-~ ----. TR”NC*TEo !aT N~80.7& =0.01 

-.-.- SRUNC,tTED AT N i 80. ‘I, =O.O2E 

FIG. 4. Comparison of the extrapolated and damped truncated solutions for the unstable 
case, N = 80, ?. = 0.01 and 0.025 with I = 4, k = 0.5, c = 0.04. 
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solution of E,(t) by using the fourth-order extrapolation scheme. We find that the 
extrapolated solution is in very close agreement with the truncated solution with 
77C = 0.01. This is shown in Fig. 4 where we have superposed the two solutions. 
We also show in this figure the early regrowth of E,(t) that comes about if we set 
qC > 0.01. At no time did the damping term change the solution of the electric 
field before a time t - O(25) wp -‘. This is in contrast to Armstrong’s collision term 
which affects the magnitude of the field as early as t - O(8) UJ;~ [4]. 

For a third example we have k = 0.5, E = 0.2, and n = 2. The solution is 
shown in Fig. 5. E,(t) undergoes exponential growth after t = 10 wpl with a 
growth rate of y1 = 0.245. The field saturates at t = 22 up1 after which it under- 
goes a smooth fluctuation in magnitude until computation was stopped at t = 50. 
E,(t) grows at a rate of yz - 27, until it reaches a maximum at t = 18.75 up’, 
after which it undergoes a period of fluctuations in magnitude with changes in sign. 
These results agree very favorably with Armstrong’s results [4]. 

By retaining the first two modes, we have a smoother regrowth of E,(t) and the 
strictly exponential growth of the first mode ceases at an earlier time than for 
IZ = 1, although it reaches its saturation point at a slightly larger time. These 
differences are due to the k wave feeding energy into the 2k wave through the 
E,(af,/&) term. 

t i ‘I -3 

FIG. 5. Numerical integration of the second-order system for unstable initial conditions, 
using the extrapolation scheme, with k = 0.5, E = 0.02, N = 80. 
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TABLE II 

Summary of Results for Two-Beam Instability 

Scheme N ?1 T’ Deviation 

80 

40 

20 

80 

80 

80 

80 

80 

- 

- 

- 

0.0062 

0.01 

0.025 

0.0062 

k = 0.5; n = 1; E = 0.02 

- - 

32 9.7 

27.5 35 

22 bd 

33 3.9 

32.5 11.6 

21.5 40.3 

33 1.2 

A 80 

B 80 

C 80 

C 80 

C 80 

- 

- 

0.0062 

0.01 

0.025 

k = 0.5; n = 2; E = 0.04 

- - 

11 bd 

32 1.3 

24 6.1 

24 39 

A summary of these solutions plus the results for several other runs are presented 
in Table II. As the numerical results clearly indicate, the extrapolated Power 
Transform method is equally applicable to the solution of unstable initial 
conditions. 

As we stated earlier (Section II), there is some scattering among the higher-order 
coefficients for the unstable case. We want to investigate the solutions of the 
electric field as we reduce the number of coefficients in the extrapolated scheme. 
We obtain reasonable results for the total time computed with N as small as 20. 

The solution of El is shown in Fig. 6 for k = 0.5 with N = 80, 40, and 20. 
The solutions with N = 80 and 40 are remarkably close, and with N = 20 there is 
only a slight shift in the regrowth of the field. We note that the error introduced by 
using a small number of coefficients is similar to the error resulting from suppressing 
the higher-order coefficients by a large collision term (recall Fig. 4). 
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SUMMARY OF RESULTS 

The incorporation of a fourth-order polynomial extrapolation scheme into the 
Power Transform method has provided us with a rapid and efficient means of 
solving the nonlinear Vlasov equation for two important initial conditions. We 
find that we are able to avoid the difficulty of a cutoff. The numerical results 
indicate that this system is somewhat more stable numerically than the Fourier- 
Hermite code; and the inclusion of a damping term in the truncated scheme does 
not influence the solution to as large a degree as with the Fourier-Hermite code. 

We find that the extrapolation procedure accurately estimates the N + 1 
coefficient to such an extent that less than 80 coefficients are needed to describe 
the system for times t - O(50 w;‘). We note that for the unstable case, if we use 
only 20 coefficients the regrowth of E1 is shifted by only At = 5~;~ (see Fig. 6). 
Comparing this with Armstrong’s results [4], we see that with a collision frequency 
as small as 7jc = 0.001, variations appear in the electric field as early as t = 8 wpl 
and the regrowth is shifted by a At = 4~;‘. Incorporating very few coefficients in 
the solution has not affected the limiting amplitude of the field nor has it changed 
the asymptotic behavior. 

__ N=80 
N = 40 

-.-.- N = 20 

I I I I I I I I, I II,,,,,, I , , , , , 
2 6 IO 14 IS 22 26 30 34 38 42 46 50 

TIME 

FIG. 6. Comparison of the extrapolated solutions for 1 E,(t)1 for the two-beam instability, 
with Y maximum = 20, 40, 80, with k = 0.5, E = 0.02, n = 1. 
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An example of the savings in computer time; the Fourier-Hermite code requires 
approximately &hr computer time for unstable initial conditions, whereas the 
extrapolated Power Transform method takes 2 min with 80 coefficients and only 
17 set with N = 20. 
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